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Background. Palindromes are known to be involved in a variety of biological processes. In the present investigation we
carried out a comprehensive analysis of palindromes in the mitochondrial control regions (CRs) of several animal groups to
study their frequency, distribution and architecture to gain insights into the origin of replication of mtDNA. Methodology/

Principal Findings. Many species of Arthropoda, Nematoda, Mollusca and Annelida harbor palindromes and inverted repeats
(IRs) in their CRs. Lower animals like cnidarians and higher animal groups like chordates are almost devoid of palindromes and
IRs. The study revealed that palindrome occurrence is positively correlated with the AT content of CRs, and that IRs are likely to
give rise to longer palindromes. Conclusions/Significance. The present study attempts to explain possible reasons and gives
in silico evidence for absence of palindromes and IRs from CR of vertebrate mtDNA and acquisition and retention of the same
in insects. Study of CRs of different animal phyla uncovered unique architecture of this locus, be it high abundance of long
palindromes and IRs in CRs of Insecta and Nematoda, or short IRs of 10–20 nucleotides with a spacer region of 12–14 bases in
subphylum Chelicerata, or nearly complete of absence of any long palindromes and IRs in Vertebrata, Cnidaria and
Echinodermata.

Citation: Arunkumar KP, Nagaraju J (2006) Unusually Long Palindromes Are Abundant in Mitochondrial Control Regions of Insects and
Nematodes. PLoS ONE 1(1): e110. doi:10.1371/journal.pone.0000110

INTRODUCTION
A DNA palindrome is a unique case of inverted repeats (IRs) [1]

where a segment of nucleotides is immediately followed by its

reverse complement. Palindromes are involved in a variety of

biological processes, for example acting as recognition sites for

bacterial restriction enzymes to cut foreign DNA [2]. They also

play important role in DNA replication and gene regulation [3,4].

IRs flanking the origin of DNA replication with the potential of

forming single-stranded stem-loop cruciform structures have been

reported to be essential for replication of the circular genomes of

many prokaryotic and eukaryotic systems [5]. Several studies have

reported the existence of high concentrations of palindromes in

proximity to the replication origins of viruses [6–8]. The local two-

fold symmetry created by the palindrome is thought to provide

binding site for DNA-binding proteins that are often dimeric. Such

double binding markedly increases the strength and specificity of

the interaction [9]. These regions have been associated with

replication origins of a few herpesviruses, bacterial plasmids, etc.

In an earlier study [8] it was demonstrated that by looking for

palindrome clusters, along with other features such as clusters of

close repeats and close inversions on the nucleotide sequence, it is

possible to fish out regions from a genome that are likely to harbor

replication origins. Also, perfect palindromes, quasi-palindromes

and IRs separated by spacers, all have the potential to form

secondary structures and are known to cause genetic instability in

Escherichia coli [10], yeast [11], and in mouse [12,13].

Metazoan mitochondrial DNA (mtDNA) is a closed-circular,

double-stranded molecule, ranging in size from 15 to 20 kb [14]. It

contains a distinct replication origin on each of the DNA strands.

Initiation of mtDNA replication is controlled by the interaction

between nuclear-encoded proteins and regulatory sequences

existing on the mtDNA [15–17]. The non-coding region of the

mitochondrial genome in animals called the ‘‘control region’’ (CR)

is believed to control the transcription and replication of mtDNA.

In vertebrates the CR has been shown to contain promoters for

transcription initiation and the origin of heavy-strand DNA

replication [15]. In insects this region is usually called ‘‘A-T rich

region’’ [18]. Information on palindromes and IRs in mitochon-

drial CRs and their role in origin of replication is scanty and needs

further investigation. In the present study we have attempted to

dissect the architecture of the origin of replication of mtDNA by

analyzing CRs of several animal phyla and also carried out

comprehensive analysis to study the frequency and distribution of

palindromes and IRs of eight animal groups.

METHODS

Source of CR sequences
From NCBI, sequences of mitochondrial CRs were queried in 12

most studied animal phyla (Porifera, Cnidaria, Platyhelminthes,

Nemertina, Rotifera, Nematoda, Brachiopoda, Mollusca,

Annelida, Arthropoda, Echinodermata and Chordata) and were

downloaded from different phyla/classes/orders separately wher-

ever necessary, by carrying out a boolean search using

combination of different keywords. For example, to download

the CR sequences of lepidopteran species, we used keywords like

lepidoptera AND control region or lepidoptera AND D loop.

Each sequence description was manually checked to ensure that

we downloaded CR sequences only.

To study the abundance of palindromes and IRs in subphyla,

classes and orders of the phyla Arthropoda and Chordata, CR
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sequences were downloaded separately from three subphyla

Chelicerata, Crustacea and Uniramia of phylum Arthropoda.

Subphylum Uniramia was further divided into Chilopoda and

Insecta. Many CR sequences have been reported in class Insecta.

Therefore, we further binned Insecta CRs based on the taxonomic

order of origin. From phylum Chordata we extracted CRs from

two important subphyla, Cephalochordata and Vertebrata. Details

of the sample size are given in figure 1.

Finally, based on number of sequences available in each phylum

we divided the data into eight animal groups namely Cnidaria,

Nematoda, Mollusca, Echinodermata, Chelicerata, Crustacea,

Insecta and Vertebrata (Figure 1; see Supplementary File S1 for

complete list of species names and other details).

Mining palindromes in control regions
A novel strategy to identify palindromes and IRs of different

lengths was devised (Figure 2). For this purpose we adopted

‘bl2seq’ (align 2 sequences) program available in standalone

BLAST package of NCBI [19]. A perl script was written, which

takes the sequence as query and reverse complement of the same

sequence as the subject, and searches for the stretch of similar

sequence between them using ‘bl2seq’ program. Pair-wise

alignments with more than 70% match were printed to the file.

Default parameters of ‘bl2seq’ were used to carry out BLAST. If

there is a spacer region of .13 bases between the inverted repeat

regions, then that sequence was considered as an IR. This

program was executed using multi FASTA files containing CR

sequences as input and output files were manually parsed to

extract the desired information. The output file was manually

verified for confirming the selection of palindromes and tabulated

in Microsoft excel data sheets. The program was found to be

efficient in identifying palindromes and IRs of longer lengths,

allowing a certain level of mismatch. The perl script used for the

analyses can be downloaded from www.cdfd.org.in/lmgpgms.

html. We did not use ‘Palindrome’ program developed by

EMBOSS, since the output did not give the length of sequence

and was difficult to make out whether the output alignment is

a palindrome or IR sequence. Also, there was no option for setting

minimum percent similarity allowed.

Figure 1. Number of species analysed for the presence of palindromes and inverted repeats in CRs. In a few phyla, significant number of CRs was not
available.
aThese sequences were not used for analysis due to small sample size.
bCRs from all the orders clubbed together and treated as one animal group ‘Insecta’.
Phyla in which ,10% of the species harboring palindromes in their CRs are represented in light gray background and .10% in dark gray background.
The phylogenetic tree is only a schematic representation and is not according to distance
doi:10.1371/journal.pone.0000110.g001

Palindrome Analysis in D-Loops
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Analysis of palindromes and inverted repeats
The perl program gave output of BLAST alignments. From these

alignments information on presence, number and length of

palindromes and IRs was sorted (Figure 2). Sequences of $20

bases were considered as palindromes in order to avoid restriction

enzyme recognition sites. The data were tabulated to calculate the

frequency of palindromes and IRs in different phyla, classes and

orders. Only eight animal groups (Figure 1) were used for the

analysis of palindromes and IRs, since the number of CR

sequences was not adequate for the remaining animal groups.

Since only 5% of the vertebrates possessed palindromes and IRs of

$20 bases, we also analyzed palindromes and IRs of 10–20 bases

for length variation within closely related organisms to get clues for

their departure from subphylum Vertebrata. We also looked into

subphylum Chelicerata where small IRs of 12–14 bases were

present in more than half of the CRs studied.

To find out the correlation of AT richness with the frequency of

occurrence of palindromes in CRs we estimated AT content of all

CRs using a C program written in-house. The C program can be

downloaded from www.cdfd.org.in/lmgpgms.html. AT content of

all the reported complete mitochondrial sequences of different

animal phyla was also calculated to draw correlation if any,

between occurrence of palindromes in CRs and AT content of

complete mitochondrial sequences. Further, statistical analyses

were carried out to estimate the abundance of palindromes and

IRs in different animal groups and to establish relationship

between AT content and palindrome occurrence in CRs. All these

analyses were carried out in Microsoft excel data sheets. AT

content of all the CR sequences analyzed can be found in

Supplementary File S1. Unpaired t-test was carried out on the AT

content of all 8 animal groups, to find out whether the AT content

values are statistically different between animal groups. In the

present study more emphasis is given to insect and vertebrate

species as more CR sequences are reported in these animal groups,

which led us to address several basic questions like why insect CRs

are rich in palindromes and IRs.

RESULTS AND DISCUSSION
Evidence accrued so far suggests that mitochondria, once existed

as free-living bacteria, were taken up by primitive ancestors of

eukaryotic cells in an arrangement termed ‘endosymbiosis’ [20].

Till recently it was believed that replication mechanism in mtDNA

is conserved and resembles that of plasmid replication. But recent

reports suggest that replication mechanism of mtDNA varies

among different animal phyla [21,22]. Metazoan mtDNA codes

for 13 or 14 proteins involved in the electron transport chain, 2

rRNA subunits, and 22 tRNA molecules. It contains a distinct

replication origin on each of the DNA strands. Mammalian and

insect mtDNAs maintain two separate and distinct origins of

replication for unidirectional synthesis of each strand of the

genome; however, location of these origins is not same in these two

animal groups.

Figure 2. Schema of palindrome and inverted repeats mining, adapted in this study. Example of a typical palindrome and inverted repeat unit is
given at the bottom. Bars with arrows represent CR sequences. In alignments where subject and query are same but reverse complements, were
considered as palindromes. In alignments where subject and query are separated by a spacer region of .13 bases, were considered as IRs.
doi:10.1371/journal.pone.0000110.g002
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Palindrome occurrence in different animal phyla
A total of 393 CR sequences of eight animal groups (Figure 1) was

analysed for the distribution and frequency of palindromes and

IRs. The analysis revealed interesting features. Palindromes were

preponderant in invertebrates than vertebrates. Among inverte-

brates, more than half of the species in Insecta (85%) and

Nematoda (50%) were found to possess palindromes, whereas 35,

20 and 15 percent of the species of Mollusca, Chelicerata and

Crustacea respectively, had palindromes. Echinoderms and

cnidarians were completely devoid of palindromes and IRs. On

the other hand, only 5 percent of vertebrates contained

palindromes and mammals were characterized by their complete

absence (Figure 3b).

Comparative genomics studies suggested that the mitochondri-

on is monophyletic in origin [20] and the original mitochondrial

endosymbiont has evolved independently in anaerobic and aerobic

environments that are inhabited by diverse eukaryotic lineages.

The evolution of various kinds of DNA motifs in CRs such as

palindromes, IRs and other recognition elements in different

animal phyla, appeared to have occurred independently after the

divergence of different animal phyla leading to variation in

number of palindromes and IRs.

In vertebrate mitochondrial CRs analysed in the present study,

palindromes were found in a few avians (Gallus sps. and Syrmaticus

ellioti), two fish species (Apeltes quadracus, Cyprinodon bovines) and

a reptile (Teratoscincus keyserlingii). IRs were found only in one

species, T. keyserlingii out of 125 vertebrates analysed.

Subphylum Chelicerata is unique in its composition of CR.

Nineteen out of 36 CRs analysed in this subphylum harbored

short IRs of 10–20 nucleotides with a spacer region of 12–14

nucleotides. Except for Acropora longicyanthus with a short palin-

drome of 14 nucleotides, phylum Cnidaria was completely devoid

of palindromes and IRs.

Palindromes in mitochondrial CRs of arthropods
Among invertebrates, in class Insecta higher abundance of

palindromes and IRs was observed. Two important orders

Lepidoptera and Diptera were analysed further for frequency

and distribution of palindromes and IRs. Mitochondrial CR of

lepidopteran insects turned out to be ‘hotspots’ of palindromes and

IRs. All but two (Erebia oeme and Pyronia tithonus), of 53 species

analysed in this order, harbored palindromes. When compared to

order Diptera, lepidopterans possessed higher number of palin-

dromes in CRs. Out of 50 dipterans, 38 had palindromes

(Figure 4a & b). We compared the number of palindromes per

CR of dipteran and lepidopteran species. In dipterans CRs

harboring only one palindrome were more as compared to

lepidopterans which harbored more than one palindrome per CR

(Figure 4a & b). To study the length distribution of palindromes in

lepidopteran and dipteran mitochondrial CRs, the length of

palindromes was analyzed. The CRs, which had $1 palindrome(s)

were considered for the analysis. The results revealed that

lepidopteran CRs had longer palindromes than those of dipterans

(Figure 4c).

Although palindromes exist naturally in the DNA sequence of

many organisms, it is difficult to maintain long palindromes

because of their genetic instability stability as demonstrated in E.

coli [23]. The instability of palindromes is attributed to a number

of causes. First, palindromes may be deleted as a result of

intermolecular or intramolecular recombination. Second, the

deletion of palindromes may result from the formation of

a cruciform structure and the subsequent processing by nucleases.

Third, in the case of palindromes containing direct repeats,

misalignment between the direct repeats may be stabilized by the

formation of a hairpin or other DNA secondary structures [24]. In

the present study we observed surprisingly long palindromes

greater than 150 bp in three (Epirrita christyi, Arethusana arethusa and

Figure 3. (a) Mean AT content of CR (%) of mitochondrial CRs (n = 393) and (b) % of mitochondrial CRs having palindromes in different animal groups
(n = 387). (c) Mean AT content of CR (%) of complete mitochondrial sequences of different animal groups (n = 201). Data was obtained from analysis
of 8 animal groups.
doi:10.1371/journal.pone.0000110.g003
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Epirrita autumnata) of the 53 lepidopterans studied. Even though

palindromes are unstable due to several reasons listed above, they

are retained in CR suggesting their possible involvement in

replication initiation of lepidopteran mitochondrial genome.

However, in dipterans we observed shorter palindromes of only

up to 56 bp. None of the CR sequences analysed in the remaining

phyla possessed palindromes greater than 150 bp. However,

molecular function of these long palindromes in insect mtDNA

needs further analysis.

Palindromes occur in AT rich regions of CRs
Since insect CRs are AT-rich, it prompted us to establish

correlation if any between AT content and palindrome occur-

rence. All CRs were pooled irrespective of the phyla to which the

species belonged and analysed for presence or absence and

number of palindromes in relation to AT content. Positive

correlation between AT content and number of palindromes with

correlation co-efficient of 0.89 was observed. Through these

analyses we propose that palindromes originate in CRs with more

than 85% AT content (Figure 5).

All animal groups except Mollusca and Echinodermata

differed significantly (p,0.05) in their CR AT content (Supple-

mentary File S2). Cnidaria, Echinodermata and Vertebrata,

which harbored no or less number of palindromes and IRs in

their CRs, have low AT content (an average of 58, 64, 61%

respectively). Even though Chelicerata and Crustacea belong to

phylum Arthropoda, to which insects belong, there is a marked

difference in their AT content of CRs. Also, abundance of

palindromes varies in these animal groups. Insects have high AT

content and high occurrence of palindromes in the CRs, whereas

Chelicerata and Crustacea have less AT and palindromes in their

CRs (Figure 3a).

Analysis of complete mitochondrial genomes of Insecta and

Nematoda also indicated the AT richness in their genomes

(Figure 3c). Nematoda, Chelicerata and Insecta have an average

AT content of more than 70%. Though Chelicerata mitochondrial

genome is rich in AT content, only a few of the species harbored

palindromes and IRs in the CR, inferring that AT content of

complete mitochondrial genome has no relationship with the

palindrome occurrence in CRs.

Figure 4. Distribution of palindromes in CRs of (a) Lepidopterans (n = 53) and (b) Dipterans (n = 50). Number of CRs is plotted against the number of
palindromic DNA stretches they contain. Many CRs were having $2 stretches of palindromes in Lepidopterans. Dipteran CRs possess less number of
palindromes when compared to Lepidopterans. (C) Distribution of palindrome lengths in dipteran (n = 82) and lepidopteran (n = 150) CRs.
Palindromes falling to each class interval (20–30 to $100 bp) were grouped. Number of palindromes in each class was converted to percent values to
compare the length distribution between Diptera and Lepidoptera. These percent values were plotted in graph against palindrome length class
intervals. In Diptera, 38 of 50 CRs had palindromes whereas, 51 of 53 CRs analysed of Lepidoptera had palindromes.
doi:10.1371/journal.pone.0000110.g004
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Inverted repeats would give rise to long

palindromes

The present study revealed surprisingly long palindromes in

mitochondrial origin of replication. It is known that palindromes

and IRs reside near the origin of replication in several bacteria,

plasmids and viruses [25]. But these palindromes and IRs are

invariably of shorter length (10–12 bp) unlike the palindromes

reported in the present study.

Long palindromic sequences are unstable since they are deleted

at extremely high rates as reported in the case of E. coli [26,27].

While short palindromes and IRs are usually much more stable;

they can be associated with the breakpoints of deletion mutations

as observed in E. coli [28,29] and in mammalian cells [30].

Distantly separated long IRs are also prone to deletion in bacteria

[31,32]. In the present study palindromes were preponderant (in

120 CRs) over IRs (in 78 CRs). This shows that in CRs,

palindromes are less prone to deletion unlike in E. coli. The

presence of a fewer IRs led us to suspect that intervening regions

between IRs would be deleted over a period of time resulting in

formation of long palindromes. This can be explained in the

following ways: i. when the DNA melts either during DNA

replication or due to any other cellular activity, there would be

intra-strand base-pairing in the regions of IRs leading to formation

of hair-pin loop. The unpaired spacer regions between IRs may be

eventually cleaved by DNases, as the tips of hairpin loops are

sensitive to single-stranded nucleases [33–37] resulting in long

palindromes (Figure 6). Higher abundance of palindromes as

compared to IRs also supports this hypothesis. ii. Alternatively,

occurrence of a DNA double-strand break near short inverted

Figure 5. Distribution of number of palindromes per CR, plotted against AT content of CR (%). Majority of CRs with less than 85 percent AT content
had no palindromes but most of the CRs with AT percent .85 possessed palindromes. Trend is that as the AT content increased, occurrence of
palindromes in CRs also increased. Number of CRs analysed was 393.
doi:10.1371/journal.pone.0000110.g005
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repeat sequences acts as a starting point in the formation of large

DNA palindromes [38–43]. Bidirectional DNA replication would

then convert the giant hairpin molecule to a palindrome.

However, we cannot exclude other factors, which are thought to

lead to formation of long palindromes in CRs of insects, as in some

cases they form as a result of a precisely regulated developmental

program. For example, previous reports have shown the formation

of long palindromes from short IRs by single strand annealing of

IRs followed by removal of nonhomologous DNA and gap-filling

DNA replication [37,39,43].

Palindrome expansion and palindrome curing
Palindromes of 4–6 bp are implicated in bacterial chromosome

and plasmid replication. Since mitochondria are thought to have

originated from bacteria, the origin of replication also has

a propensity to harbor palindromes. But palindromes present in

CRs of insects are much longer than those present in bacterial

origin of replication. Phylogenetic evidence derived from rRNA

[44] and protein data [45] support the view that all mitochondrial

genomes are descendents of a common proto-mitochondrial

ancestor.

Due to varied evolutionary forces acting on different species,

lower animal groups like Cnidaria and higher animal groups like

echinodermates may be completely devoid of palindromes and,

longer palindromes would have originated or expanded from

already present smaller palindromes or IRs in some species of

insects and nematodes, depending on the bio-physiochemical

environment within the cell. Although the genetic role of mtDNA

appears to be universally conserved, this genome exhibits

remarkable variation in conformation and size, as well as in

actual gene content, arrangement and expression [46] including

palindrome occurrence in CRs.

The surprising absence of long palindromes and IRs in CR of

vertebrate mtDNA implies that during the course of evolution,

higher animals like chordates probably have adopted a slightly

different mechanism of replication of mtDNA which does not

require palindromes as a recognition motif in replication initiation.

The variation in distribution of palindromes and IRs in different

animal groups suggests that the mode of replication origin is quite

different between different animal phyla. This is supported by the

previous studies on CR of vertebrates and insects [21,22].

The AT bias is generally observed in insect mitochondrial

genomes, which ranges from 69.5 to 84.9% [47,48] as against 53

to 66% in vertebrates. The strongest AT bias is found in the CR.

The CR contains the origin of replication for the heavy strand in

vertebrates [49] and both strands in Drosophila [50]. Mitochon-

drial gene order variation occurs both between and within animal

phyla [51]. In insects, the CRs, which account for 80–95% AT,

lack any apparent signals such as conserved sequence blocks, for

the initiation of replication like those observed in vertebrates

[52,53]. These differences in replication initiation mechanism of

vertebrates and insects probably hold the answer as to why CRs of

some phyla are rich in palindromes and IRs.

The vertebrates were also found to be deficient in short

palindromes. Of the 125 species examined, only 50 harbored short

palindromes. Multiple sequence alignment of these short palin-

dromic sequences showed contraction of a few palindromes,

indicating that during course of evolution palindromes are lost

gradually by reduction in size. Contraction of palindromes would

be due to mutations at both ends of palindromes as evident from

Gallus sps (Supplementary File S3).

Why long palindromes in CRs of Insecta only?
Metazoan mtDNA contains a distinct replication origin on each of

the DNA strands. The position of the replication origin and mode

of replication have been studied in detail in mammalian mtDNA

and also recently in insects [21]. In mammals, the replication

begins from the replication origin of H-strand (OH) and DNA

synthesis proceeds unidirectionally. When the synthesis of H-

strand reaches two-thirds of the genome, the synthesis of L-strand

(OL) is initiated from the replication origin of the L-strand located

two-thirds of the genomic distance away from the replication

origin of H-strand [15,16] (Figure 7). The previous observations

indicate that regulatory sequences of mtDNA replication are

different in invertebrate and vertebrate species and therefore

suggest that the regulatory systems have changed through the

evolution of animals [21].

Several regulatory sequences have been identified in the CR of

the vertebrate mtDNA. These are present immediately upstream

of the OH and are suggested to be implicated in the initiation of

the H-strand replication [54,55]. These regulatory sequences are

thought to be involved in generating the 39 ends of the RNA

primers, which are required for the DNA synthesis of the H-

strand. Around the OL, the IR sequence of 10–12 bp, that could

form a stem-loop configuration is conserved among vertebrate

species and is also proposed to be required for the initiation of

replication [54]. In vitro replication studies have suggested that the

IR sequence serves as a recognition motif for mtDNA primase

which provides a short RNA primer for L-strand synthesis, and

DNA synthesis is initiated near the base of the stem-loop structure

utilizing the 39 ends of the RNA primer [56].

Figure 6. Schema showing possible mechanism of origin of long
palindromes from IRs.
doi:10.1371/journal.pone.0000110.g006
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In insects, the leading and lagging strands are termed minor and

major coding strands according to the relative numbers of the gene

encoded on the respective DNA strand [57]. The replication

origin for minor strand (ON) is located in the middle portion of

CR. Synthesis of minor coding strand proceeds unidirectionally,

and the major coding strand synthesis begins after 97% of the

minor coding strand synthesis is completed [58,59] (Figure 7). If

the replication mode is similar between both insect and vertebrate

mtDNAs, the replication origin for major strand (OJ) must be

located 97% of the genomic distance away from the replication

origin for minor strand, that is, within the CR [21]. The fact that

CR contains the OH in vertebrates [49] and both ON and OJ in

insects [50], tempts us to speculate that occurrence of palindromes

and IRs would aid in replication of insect mtDNA.

According to the strand-asynchronous, asymmetric model of

vertebrate mtDNA, the replication of the L-strand is initiated

when the synthesis of the H-strand passes beyond the L-strand

origin, and template strand for the L-strand replication becomes

single stranded. In insects OJ is located 97% genomic distance

away from the ON that is, both OJ and ON lie within the CR. This

observation is consistent with the recent findings in Drosophila

mtDNA that the free 59 ends in the CR near the tRNAIle gene,

exactly 97% genomic distance away from the ON [21]. To draw

similarity between OJ of insects and OL of vertebrates, there

should be presence of IRs in OJ like in OL to form stem loop

structure for the initiation of replication from OJ. Indeed in the

present study we have found palindromes and IRs in CRs of

insects.

Conclusions
This is a comprehensive report on the analysis of palindromes and

IRs comprising 393 CRs from seven animal phyla. We are

reporting that long palindromes and IRs are abundant in insect

mitochondrial origin of replication. Lower animals like cnidarians

and higher animal groups like chordates are almost devoid of long

palindromes, where as many species of Arthropoda, Nematoda,

Mollusca and Annelida harbor palindromes and IRs in their CRs

(Figure 1). Here we have given the primary data on the effect of

AT richness on palindrome occurrence and plausible reasons for

origin of longer palindromes from short inverted repeats. Study of

CRs of different animal phyla uncovered unique architecture of

this locus, be it high abundance of long palindromes and IRs in

CRs of Insecta and Nematoda, or short IRs of 10–20 nucleotides

with a spacer region of 12–14 bases in subphylum Chelicerata or

nearly complete of absence of any long palindromes and IRs in

Vertebrata, Cnidaria and Echinodermata.

SUPPORTING INFORMATION

Supplementary File S1 Details of the control region sequences

used in the present study

Found at: doi:10.1371/journal.pone.0000110.s001 (0.10 MB

XLS)

Supplementary File S2 P-values obtained by t-test performed

on AT percent values of 8 animal groups.

Found at: doi:10.1371/journal.pone.0000110.s002 (0.01 MB

PDF)

Supplementary File S3 CLUSTAL X - Multiple sequence

alignment of short palindromes found in vertebrates

Found at: doi:10.1371/journal.pone.0000110.s003 (1.61 MB

PDF)
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